

Edexcel Chemistry A-level Topic 17 - Organic Chemistry II

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What property must a carbon atom have for the molecule to display optical isomerism about that carbon atom?

D PMTEducation

What property must a carbon atom have for the molecule to display optical isomerism about that carbon atom?

4 different substituents attached to one carbon

atom

What are the similarities and differences between two optical isomers?

www.pmt.education

What are the similarities and differences between two optical isomers?

Same atoms and bonds, but they are non-superimposable

mirror images of one another. NOT IDENTICAL in chemical

properties necessarily.

Differ in the way they rotate plane polarised light - rotate

plane of polarisation by the same angle but in different

directions.

What word is used to describe optically active molecules?

What word is used to describe optically active molecules?

chiral

What are the pair of isomers called?

What are the pair of isomers called?

Enantiomers

What is the chiral centre?

What is the chiral centre?

The carbon that has four different substituents

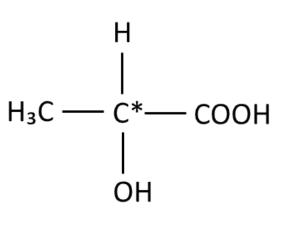
attached to it

How is the chiral centre denoted?

How is the chiral centre denoted?

C* (star on C)

Give two examples of chiral molecules. Draw one of them (both enantiomers).



Give two examples of chiral molecules. Draw one of them (both enantiomers).

All alpha amino acids, except glycine.

Lactic acid / 2-hydroxypropanoic acid

www.pmt.education

DOfSPMTEducation

How is light polarised?

How is light polarised?

By passing it through a polaroid filter, so oscillations are only in one plane.

What effect does the racemic mixture have on plane polarised light?

What effect does the racemic mixture have on plane polarised light?

None, as the rotation by each enantiomer cancels out to nothing

What effect does the + isomer have on plane polarised light?

What effect does the + isomer have on plane polarised light?

Rotates plane of polarisation by x⁰ clockwise

What effect does the isomer have on plane polarised light?

What effect does the - isomer have on plane polarised light?

Rotates plane of polarisation by x^o anti clockwise (same angle, opposite direction)

What is the structure of a polarimeter?

What is the structure of a polarimeter?

Light source (unpolarised light) \rightarrow polarising filter (polarised light) \rightarrow polarised light passes through compartment containing sample \rightarrow detector determines the angle of rotation of the plane polarised light

What are polarimeters used for?

What are polarimeters used for?

To identify which enantiomer is present, the purity of the sample, the concentration of the sample etc.

Why is the CH₃CH(OH)CN

molecule formed chiral?

Why is the CH₃CH(OH)CN molecule formed chiral?

H, CH₃, OH and CN groups attached to the central chiral carbon atom - 4 substituents

How does this second stage affect the chirality?

How does this second stage affect the chirality?

Does not affect it - still racemic as chirality not

affected by this stage.

Are racemic mixtures formed in nature? Why?

Are racemic mixtures formed in nature? Why?

Not often, as enzyme mechanisms are 3D so only form one enantiomer

Why is optical isomerism a problem for the drug industry?

Why is optical isomerism a problem for the drug industry?

Sometimes, only one enantiomer is effective due

to enzyme's active site/cell receptors being 3D.

What are the options to resolve the issue of only one enantiomer being effective?

What are the options to resolve the issue of only one enantiomer being effective?

- Separate enantiomers difficult and expensive as have very similar properties
- 2. Sell racemate wasteful as half is inactive
- 3. Design alternative synthesis to only produce one enantiomer.

Examples of optically active drugs?

Examples of optically active drugs?

Ibuprofen, Thalidomide

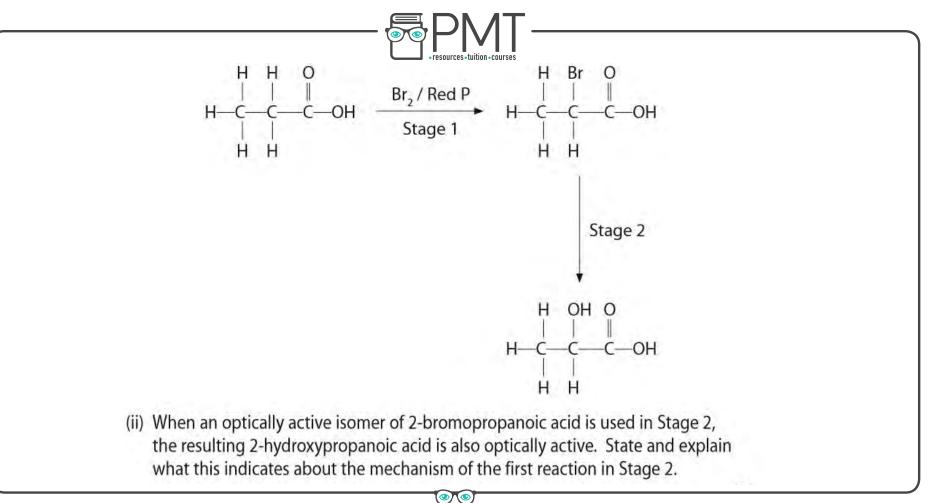
Why is ibuprofen able to be sold as

a racemate, even though the +

isomer is needed to treat

inflammation?

Why is ibuprofen able to be sold as a racemate, even though the +


isomer is needed to treat inflammation?

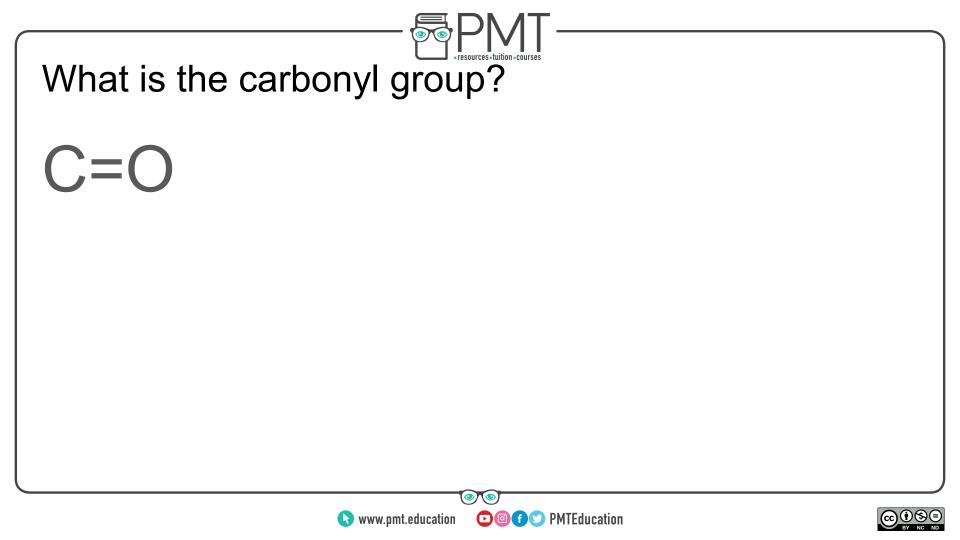
Sold as 50% racemate.

But body converts 60% of R- isomer to S+ isomer \rightarrow end up with 80% S+ isomer

www.pmt.education

Answer

A racemic mixture is not formed	
OR	
More of one enantiomer /(optical) isomer is form	ned
OR	
Only one enantiomer /(optical) isomer is formed	
Second mark (Stand alone)	(1)
(Some of the) reaction is $S_N 2$	(1)
Third mark (Stand alone) Nucleophile / OH ⁻ only attacks from one side of molecule / from the opposite side to leaving gro	
ALLOW	(1)
Use of 'intermediate' for 'transition state' in description of $S_{\mbox{\scriptsize N}}2$	



What is the carbonyl group?

What is the functional group and general formula for an aldehyde?

What is the functional group and general formula for an aldehyde?

RCHO (C double bonded to O, single bond to H and R)

What is the functional group for a ketone?

What is the functional group for a ketone?

RCOR' (C double bonded to O)

How do you name aldehydes?

How do you name aldehydes?

-al suffix (C=O is on the end of a chain)

How do you name ketones?

How do you name ketones?

-one suffix (designate number for which

carbon C=O is on)

What kind of intermolecular forces do molecules with the carbonyl group have? Why?

D PMTEducation

What kind of intermolecular forces do molecules with the carbonyl group have? Why?

Permanent dipole-dipole due to the polar C=O

bond (O is delta -) not hydrogen bonds.

How soluble are they in water? What influences solubility?

How soluble are they in water? What influences solubility?

Yes - form hydrogen bonds between water molecules and oxygen of C=O. As C chain length increases, solubility decreases.

Which bond in carbonyl compounds is usually involved in reactions? Why?

Which bond in carbonyl compounds is usually involved in reactions? Why?

C=O, due to the polarity of the bond (large difference in electronegativity between C and O)

What is the strongest bond in carbonyl compounds?

What is the strongest bond in carbonyl compounds?

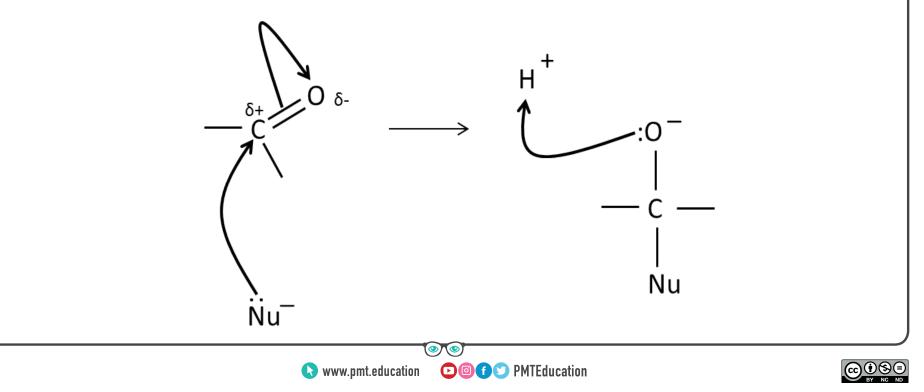
C=O

Draw a mechanism for the

nucleophilic addition of a carbonyl

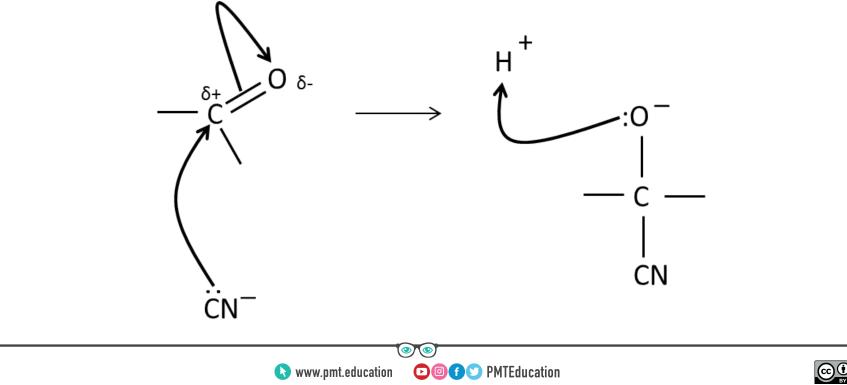
compound, using :Nu⁻ to represent

the nucleophile.



Draw a mechanism for the nucleophilic addition of a carbonyl

compound, using :Nu⁻ to represent the nucleophile.


Draw a mechanism for the nucleophilic addition of HCN to a carbonyl compound.

Draw a mechanism for the nucleophilic addition of HCN to a carbonyl compound.

Why is the addition of HCN important?

Increases the length of the carbon chain by one carbon atom - very useful

Will the product of HCN added to a carbonyl compound have optical isomers? Why?

Will the product of HCN added to a carbonyl compound have optical isomers? Why?

Yes they will. In the aldehyde/ketone, the

carbonyl carbon is planar, so the :CN⁻ can attack

from either above or below, forming two

enantiomers.

What is the name of the

product when HCN is added

to a carbonyl compound?

What is the name of the product when HCN is added

to a carbonyl compound?

Hydroxynitriles (have OH and CN groups)

What is Fehling's solution? What colour is it?

What is Fehling's solution? What colour is it?

Copper complex ions, blue

What happens when an aldehyde is added to Fehling's solution?

What happens when an aldehyde is added to Fehling's solution?

Reduced to Cu^+ ions \rightarrow colour change to brick rod pot

brick red ppt

What happens when a ketone is added to Fehling's solution?

D PMTEducation

What happens when a ketone is added to Fehling's

solution?

No visible change \rightarrow stays blue

What is in Tollens' reagent?

What is in Tollens' reagent?

Silver complex ions, colourless solution

What happens when an aldehyde is added to Tollen's reagent?

What happens when an aldehyde is added to Tollen's reagent?

(S'

Silver mirror forms as Ag⁺ reduced to Ag

What happens when a ketone is added to Tollen's reagent?

What happens when a ketone is added to Tollen's reagent?

No visible change

What is a qualitative test for the presence of a carbonyl group and how you identify the carbonyl compound?

What is a qualitative test for the presence of a carbonyl group and how you identify the carbonyl compound?

2,4-DNP reacts with both aldehydes and ketones to form an orange precipitate. To identify the compound take the melting point of orange crystals product from 2,4-DNP and compare melting point with known values in database.

Write a reaction of propanone with iodine in the presence of alkali

DOG PMTEducation

Write a reaction of propanone with iodine in the presence of alkali

$CH_3COCH_3 + 3I_2 + 4NaOH → CHI_3 + CH_3COONa + 3NaI + 3H_2O$

What is another oxidising agent for alcohols and aldehydes? What change in colour does this undergo?

What is another oxidising agent for alcohols and aldehydes? What change in colour does this undergo?

Acidified potassium dichromate (VI) - H_2SO_4 and $K_2Cr_2O_7$. Colour change from orange to green.

What is a reducing agent for aldehydes and ketones? What ions does this release in solution?

What is a reducing agent for aldehydes and ketones? What ions does this release in solution?

NaBH₄ (sodium tetrahydridoborate (III)) or lithium tetrahydridoaluminate , releases an H⁻ ion

Draw and name a mechanism for the reduction of an aldehyde.

Draw and name a mechanism for the reduction of an aldehyde.

Nucleophilic addition

Write an equation for the reduction of pentan-2-one and for 3-methylbutanal

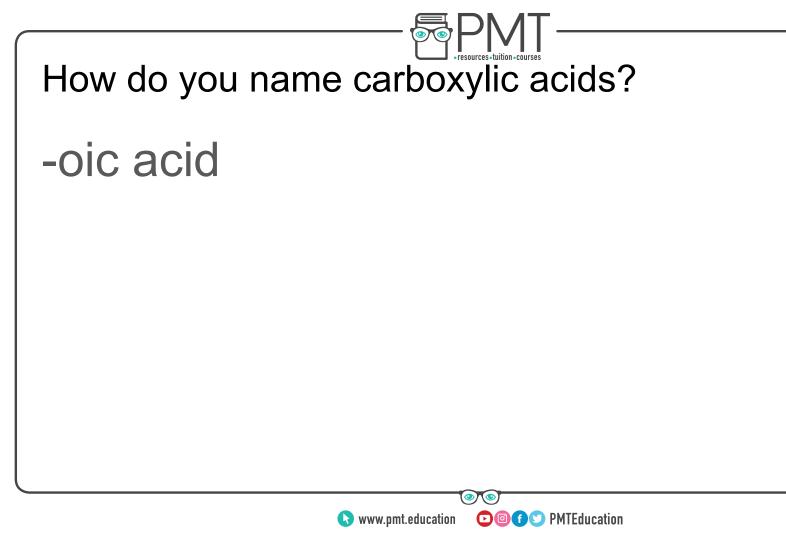
Write an equation for the reduction of pentan-2-one and for 3-methylbutanal

 $CH_{3}COCH_{2}CH_{2}CH_{3} + 2[H] \rightarrow CH_{3}CH(OH)CH_{2}CH_{2}CH_{3}$ $CH_{3}CH_{2}CH_{2}(CH_{3})CHO + 2[H] \rightarrow CH_{3}CH_{2}CH_{2}(CH_{3})CH_{2}OH$

What is a carboxylic acid? Functional group?

What is a carboxylic acid? Functional group?

-COOH (C=O and C-OH)



How do you name carboxylic acids?

Are carboxylic acids soluble in water? Why? What influences their solubility

Are carboxylic acids soluble in water? Why? What influences their solubility

Yes. Acid group can form hydrogen bonds with water molecules

What are the intermolecular forces in carboxylic acids?

What are the intermolecular forces in carboxylic acids?

Hydrogen bonds in solid state - very strong.

What are the 3 ways to prepare carboxylic acid?

What are the 3 ways to prepare carboxylic acid?

Oxidation of alcohols or aldehydes and the hydrolysis of nitriles

Write an equation of the reaction between propanoic acid and lithium tetrahydridoaluminate

Write an equation of the reaction between ethanoic acid and lithium tetrahydridoaluminate

$CH_{3}CH_{2}COOH + 4[H] \rightarrow CH_{3}CH_{2}CH_{2}OH + H_{2}O$

Write an equation of the reaction between ethanoic acid and phosphorus(V) chloride

Write an equation of the reaction between ethanoic acid and phosphorus(V) chloride

$CH_{3}CH_{2}COOH + PCI_{5} \rightarrow CH_{3}CH_{2}COCI + POCI_{3} + HCI$

What are esters and what are

they formed from? Give the

functional group, general

formula?

What are esters (what are they formed from)?

Functional group, general formula?

Formed from carboxylic acids and alcohols. RCOOR' (C=O, C-O-C)

Write an equation for the reaction of ethanoic acid with propan-1-ol

Write an equation for the reaction of ethanoic acid with propan-1-ol

 $\mathrm{CH}_3\mathrm{COOH} + \mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{OH} \rightarrow \mathrm{CH}_3\mathrm{COOCH}_2\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{H}_2\mathrm{O}$

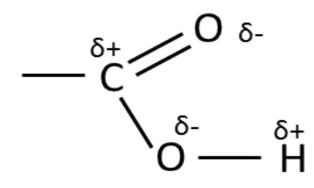
How do you name esters?

How do you name esters?

Start with the group that has replaced the

hydrogen, then acid part e.g. propyl (from

alcohol) ethanoate (from carboxylic acid).


In what way is the carboxylic acid group polarised? (Diagram)

In what way is the carboxylic acid group polarised? (Diagram)

Write an equation for the equilibrium formed by a ethanoic acid in solution

Write an equation for the equilibrium formed by a ethanoic acid in solution

$CH_3COOH (aq) \rightleftharpoons CH_3COO^- (aq) + H^+ (aq)$

What happens to the negative charge on the ethanoate ion in terms of electrons?

What happens to the negative charge on the ethanoate ion in terms of electrons?

Electrons delocalise so the negative charge is shared across the whole of the carboxylate group

carboxylic acids from other

-OH containing

compounds?

How could you distinguish carboxylic acids from

other -OH containing compounds?

Add NaHCO₃, acids will produce sodium salt, water and carbon dioxide.

Write an equation for the reaction of ethanoic acid with NaOH

Write an equation for the reaction of ethanoic acid with NaOH

$CH_3COOH + NaOH \rightarrow H_2O + CH_3COO^-Na^+$

Write an equation for the

reaction of ethanoic acid

with Na_2CO_3 .

Write an equation for the reaction of ethanoic acid

with Na_2CO_3 .

$2CH_{3}COOH + Na_{2}CO_{3} \rightarrow 2CH_{3}COO^{-}Na^{+} + H_{2}O + CO_{2}$

What catalyst is needed for the formation of esters from alcohols and carboxylic acids?

What catalyst is needed for the formation of esters from alcohols and carboxylic acids?

Concentrated strong acid e.g. H₂SO₄

What catalyst is needed for the hydrolysis of esters?

What catalyst is needed for the hydrolysis of esters?

Dilute strong acid e.g. H₂SO₄

What is an alternative method of hydrolysis?

What is an alternative method of hydrolysis?

Base hydrolysis

What are the advantages of

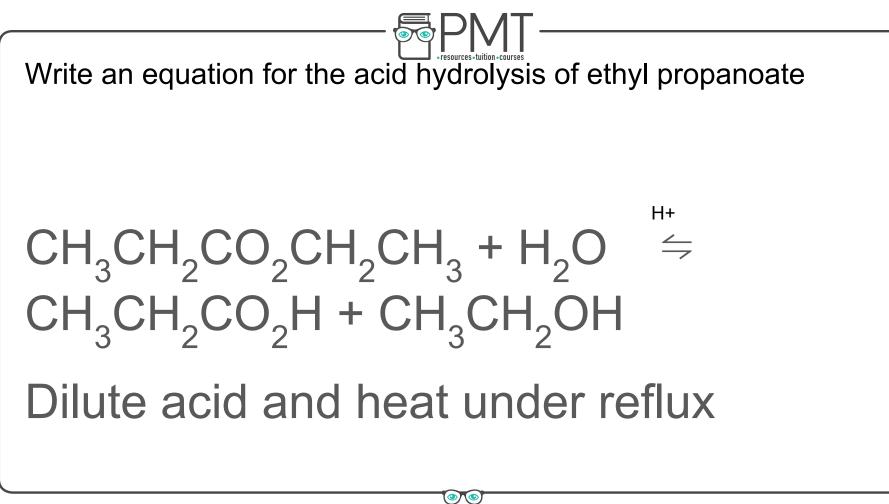
base hydrolysis?

What are the advantages of base hydrolysis?

Reaction goes to completion due to neutralisation

by base - more product in the mixture than acid

catalysed hydrolysis.



Write an equation for the acid hydrolysis of ethyl propanoate including conditions

Write an equation for the base hydrolysis of ethyl propanoate including conditions

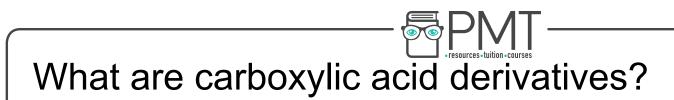
Write an equation for the base hydrolysis of ethyl propanoate

$CH_{3}CH_{2}CO_{2}CH_{2}CH_{3} + NaOH \rightarrow CH_{3}CH_{2}CO_{2}^{-}Na^{+} + CH_{3}CH_{2}OH$

Heat under reflux

What does transesterification mean?

Converting one type of ester to another



What are carboxylic acid derivatives?

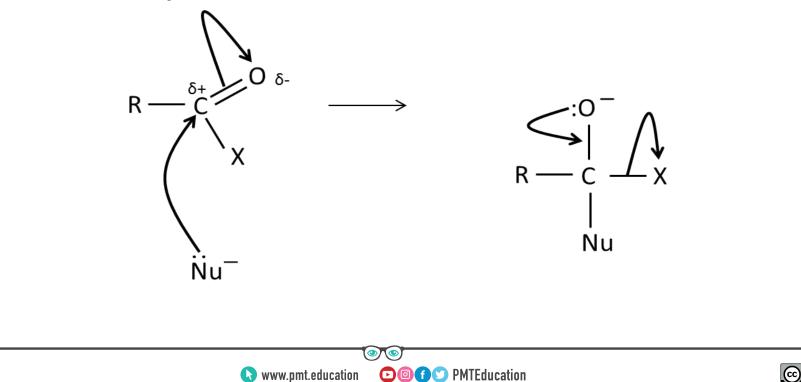
Molecules that have the acyl group as part of their structure, formed from carboxylic acids

Name two acid derivatives and give their functional groups

Name two acid derivatives and give their functional groups

Acyl chlorides: RCOCI

Acid anhydrides: RCOOCR / (RCO)₂O


Draw the mechanism for the acylation of a nucleophile by an acid derivative.

Draw the mechanism for the acylation of a nucleophile by an acid derivative.

If the nucleophile is ammonia for the acylation of acyl chlorides, what are the products of the reaction?

If the nucleophile is ammonia for the acylation of acyl chlorides or acid anhydrides, what are the products of the reaction?

An amide

Write an equation for the reaction of ethanoyl chloride and ammonia

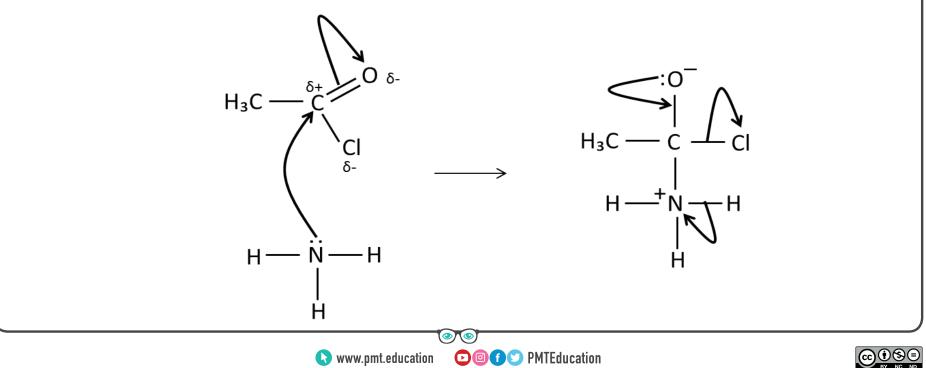
Write an equation for the reaction of ethanoyl chloride and ammonia

$CH_3COCI + 2NH_3 \rightarrow CH_3CONH_2 + NH_4CI$

Draw the mechanism for the

reaction of ethanoyl chloride

and ammonia



Draw the mechanism for the reaction of ethanoyl

chloride and ammonia

If the nucleophile is a primary amine, what are the products of the acylation of acyl chlorides?

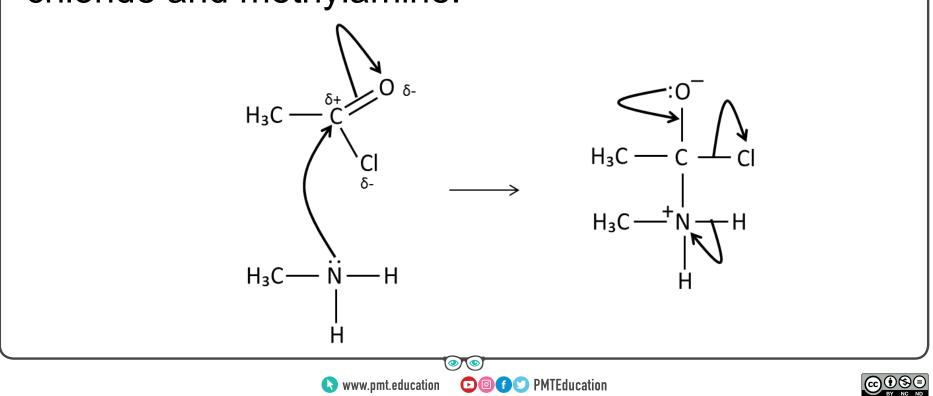
If the nucleophile is a primary amine, what are the products of the acylation of acyl chlorides or acid anhydrides?

N-substituted amide

Write an equation for the reaction of ethanoyl chloride and methylamine

Write an equation for the reaction of ethanoyl chloride and methylamine

$\mathrm{CH}_3\mathrm{COCI} + \mathrm{CH}_3\mathrm{NH}_2 \rightarrow \mathrm{CH}_3\mathrm{CONHCH}_3 + \mathrm{CH}_3\mathrm{NH}_3\mathrm{CI}$


Draw the mechanism for the reaction of ethanoyl chloride and methylamine.

Draw the mechanism for the reaction of ethanoyl chloride and methylamine.

If the nucleophile is an alcohol, what are the products of the acylation of acyl chlorides?

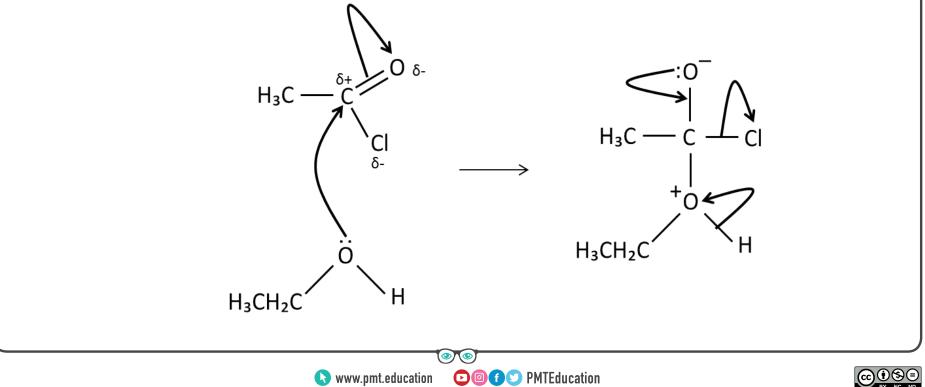
If the nucleophile is an alcohol, what are the products of the acylation of acyl chlorides or acid anhydrides?

An ester

Write an equation for the reaction of ethanoyl chloride and ethanol

Write an equation for the reaction of ethanoyl chloride and ethanol

$\mathrm{CH}_{3}\mathrm{COCI} + \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{OH} \rightarrow \mathrm{CH}_{3}\mathrm{COOCH}_{2}\mathrm{CH}_{3} + \mathrm{HCI}$


Draw the mechanism for the reaction of ethanoyl chloride and ethanol

Draw the mechanism for the reaction of ethanoyl chloride and ethanol

If the nucleophile is water, what are the products of the acylation of acyl chlorides

If the nucleophile is water, what are the products of the acylation of acyl chlorides or acid anhydrides?

Carboxylic acid (hydrolyses ester

linkage)

What is the name of this reaction (the acylation of acyl chlorides/ with water as a nucleophile)?

D PMTEducation

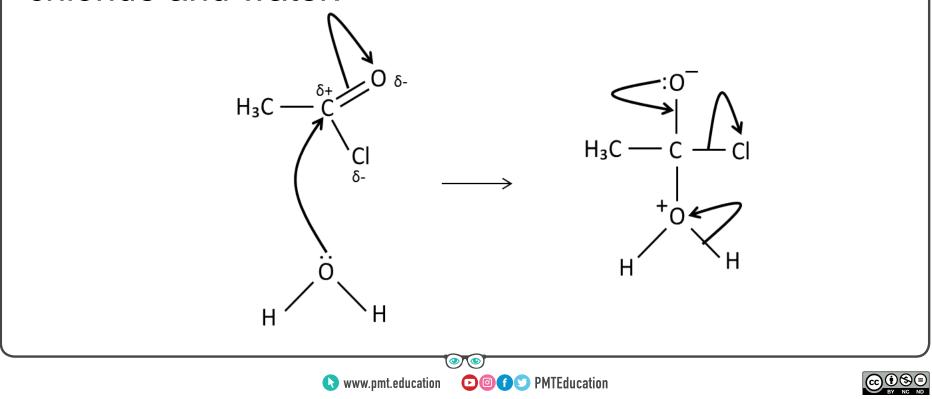
What is the name of this reaction (the acylation of acyl chlorides/acid anhydrides with water as a nucleophile)?

hydrolysis

Write an equation for the reaction of ethanoyl chloride and water.

Write an equation for the reaction of ethanoyl chloride and water.

$CH_3COCI + H_2O \rightarrow CH_3COOH + HCI$


Draw the mechanism for the reaction of ethanoyl chloride and water.

Draw the mechanism for the reaction of ethanoyl chloride and water.

What is a commercially important acylation reaction?

What is a commercially important acylation reaction?

The manufacture of aspirin

What is condensation?

What is condensation?

Small molecule eliminated (usually H_2O) to form a larger molecule

How many monomers are condensation polymers usually formed from?

How many monomers are condensation polymers usually formed from?

two

What properties do these monomers forming condensation polymers have?

What properties do these monomers forming condensation polymers have?

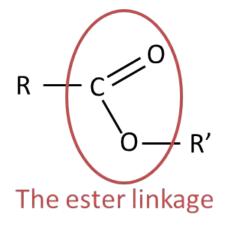
Each has two functional groups

Examples of condensation polymers?

Polyesters

Polyamides

Polypeptides


What is the linkage in a polyester?

What is the linkage in a polyester?

What molecule is eliminated

in formation of a polyester?

What molecule is eliminated in formation of a

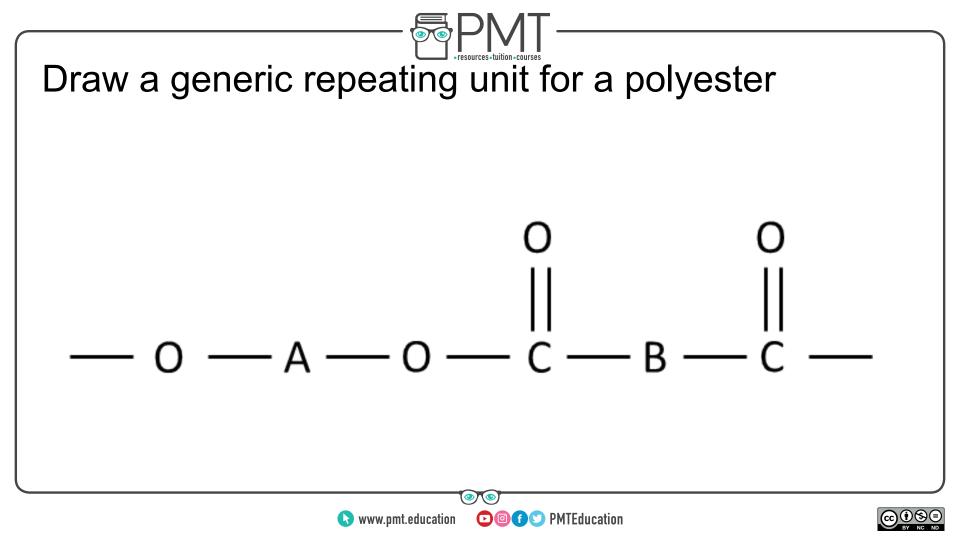
polyester?

What are the two monomers which form a polyester (generic names and structures)?

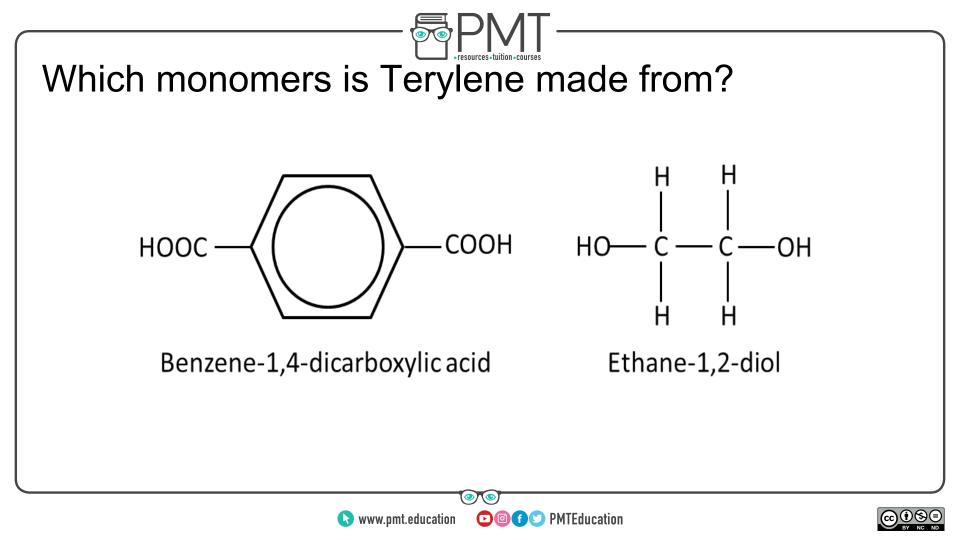
What are the two monomers which form a polyester (generic names and structures)?

Diol and dicarboxylic acid or a molecule with both

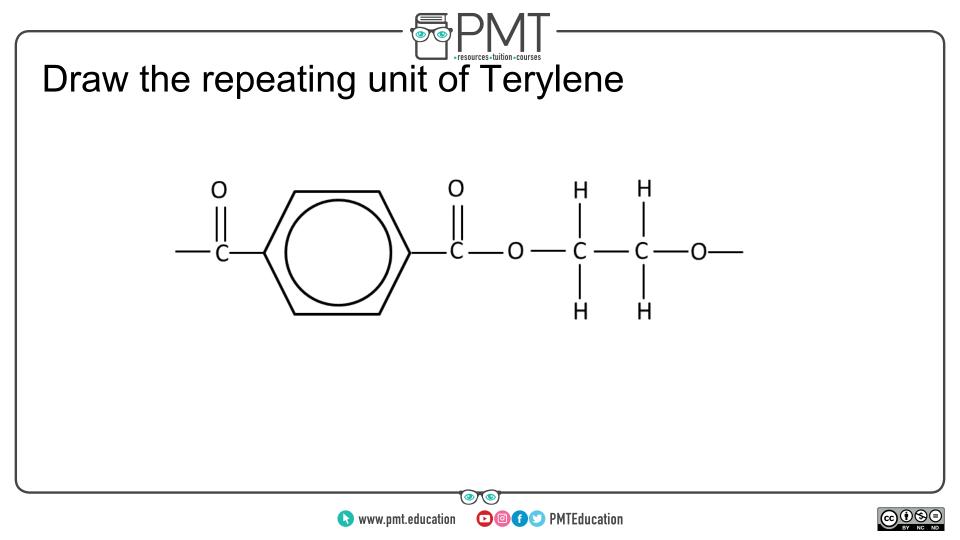
alcohol and a carboxylic acid functional groups



Draw a generic repeating unit for a polyester



Which monomers is Terylene made from?



Draw the repeating unit of Terylene

What is Terylene used for?

What is Terylene used for?

As a fibre for making clothes

Why can condensation polymers be broken down?

Why can condensation polymers be broken down?

They have polar bonds

How are condensation polymers broken down?

How are condensation polymers broken down?

Hydrolysis (opposite of condensation)

What is the difference between addition and condensation polymerisation?

What is the difference between addition and condensation polymerisation?

Condensation makes the polymer and eliminates a small molecule; addition polymerisation breaks C=C to form only one product (just the polymer).

Why do polyesters not show hydrogen bonding?

Why do polyesters not show hydrogen bonding?

All O-H bonds are removed during polymerisation

